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NATURAL CONVECTION IN LIQUIDS CAUSED BY ABSORPTION OF LASER RADIATION

R.S. AKOPYAN and B.YA. 2EL'DOVICH

A problemof regular, natural convection in a horizontal layer of liquid in
a gravitational field, with volume heat sources distributed in the plane
of the layer in a spatially periodic manner, is considered. It is shown
that the response of the system is greatest, other conditions being equal,
when the period of the source is approximately equal to twice the thickness
of the layer.

The literature offers a large number of analytically solved problems
on natural convection when there is a temperature gradien* /1-3/ created
when heat is applied to the layer boundaries., At present, the absorption
of energy from a ccherent light wave generated by a laser makes it possible
to produce volume heat emission with practically any spatial distribution
required, and to alter this distribution at will without any difficulties.

1. Linearized convection equations with volume heat sources. Let us consider
a horizontal layer of liquid —L/2<:z<L/2 of thickness L, in the gravity field g= ~ge, g>0.
We shall assume that two, plane coherent light waves impinge on the layer, and their inter-
ference leads to a spatially periodic intensity distribution |E(z,y)|? and, with weak absorp-
tion of light, to velume-distributed heat sources of the form

Q= E (i f= T HE P41 Ee a.h
E\E;exp (ikx + th y) — EiEjexp (—~ik z— ik )

Here k= (ky. %, 1is the wave vector of the inhomogeneous part of the heat emission, |k|=
2n|sina, — sina, | /A where u,, a, are the angles of incidence of the waves, » is the wavelength
of the light in air, x is the light absorption coefficient (xL<€1), ¢ is speed of light in
vacuo, and n is the refractive index of the liquid.

Let the temperature T, be maintained at the rigid boundaries := +4L/2 of the layer, and
the boundary condition of adhesion of the liquid v{z=4L2)=0 be given. We have accordingly
the equilibrium state of the light field

Vo =0, Ty = const, po = const, p, = p (z = 0) — p,g=
where v is the velocity, p is the density and p is the pressure. When the layer is iluminategd,

the system becomes perturbed and the steady state equations for the variations 0= 7T~ T, &p=
—ap, 8p = p -~ p, have, in the Boussinesg approximaticn, the form /1, 2/

*en

T = gL (2. 1112, g = =g (1.2)
8apec,y

NV — grad Ap — pegale, = 0 1.3;

divv=20 SR

Here ¢, is the heat capacity, x is the thermal Qiffusivity, 1n is viscosity anéd &« is the
volume expansion coefficient of the liquig.
Applying as usual the operztors e.rot and e.rotrot te Eq.{1.3) and using (1.4}, we obtain

V= 0, E=e.rot v (1.5
8% 676 apy”
V‘IZT(W?-&T/I:O' .4:"'::]'- {1.6y

From the boundary conditions it follows that oi, 6z = duyloy = Gryléy = dyfor = 0 when = =132,
This, together with (1.4), implies that 4r,6:=10, l(r;=0 when z= +12, The system of eguations
{1.1), {1.2), (1.4)—1(1.6) and the boundary conditions shown are used to determine the pexturbed
guantities 6(r) and v (r.

2. Natural convection. From (1.5) and the boundary conditions for t it follows that
§(n=0 at all points of the liguid, i.e. there are no "screw" motions. We shall seek the
sclution of the system of equations (1.2), (1.4}, (1.6) and Et(n=0 in the form

E B+ 1E R L2
9(')°q'i—l|—2—l—2—[(”§") “z’}+9(Z>exp<«’k,:c-f-i%‘yy)+ c.c. 2.1

Ve y s @) = Vo L @ exp ke + ik + c.c.
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Then we obtain the following system of equations for @€ (z) and V,(:):

42 1 i 2
(W‘“’) =—TIm ( a7 ““’) V= L14a%8 @22

) 2 agLlivenE ks
a=kL, A=k 2k 2, Zz—z“, I = e

The spatially homogeneous part of the heat emission leads, neglecting convection, to the
parabolic temperature distribution described by formula (2.1). The temperature gradient for
this distribution is greatest near the boundary, where |[dT/az|= ¢ (|E; |2+ |E |?/2. Introducing
now the Rayleigh number with help of the above value of the temperature gradient

Ls y ar agLli%en .
=% 1" = Teacaay U E\p+1E 7 .3)
»

we can formulate the criterion of applicability of the above arguments. The linearization of
the initial system leading to the Boussinesq approximation is valid for R =<<4-10°. As we know
{e.g. /4/), the value R = R,= i8,68-10* determines the threshold of stability in the case when
the upper and lower boundary of the layer are at the same temperature and the unstable
stratification depends only on internal evolution of heat. Therefore the influence of the
homogenecus heat emission on the natural convection discussed here is vanishingly small,
provided that the Rayleigh number satisfies, with a margin, the condition given above for the
Boussinesq approximation to be applicable,

From (2.2) we obtain the following equation and boundary conditions for the z-component
of the velocity:

@ \8

<azz —cﬁ} V, = - lg? 2.3

1 . Ay kd Vo -
t=z=7. Vi=z :<az=“"2), v,=0 (25

As we see, Eq.(2,4) and boundary conditions (2.5) are invariant under the transformation
Z - —~2Z. therefore its sclution must be an even function of Z. Therefore the general scluticn

of (2.4) has the form
V. (2= Ja™% — {0y = ¢3Z%) ch (a) ++ c,Z sh (aZ) (2.6

The boundary conditions at Z=3, and Z= —!, are identical, yielding three conditicns
(2.5) for determining three constants .. . and we obtain

7 71

o= = g [32;1 ch”-—%——’— (32 -~ a% sha ——a“}{ch—%— {a < sh a)J
! a F g =1
’(‘h'—z"!

PRI =1 .
g = ;‘;éSh ~ ~=r¢h A }.u—»sh:. coam — T J

o
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~

Using the save notation we obtair from (1.3}, the first eqguation of (2.2} and &= (,

i

CRVAR YW {Ju=% — beg ch 122 (2.8
. dU (2}
Vot = " (2.9
Rotating the coordinate axes in the 2.y plane we can obtain e, = C¢. and this will be

assumed to hold below. Let us consider some special features of the behaviour of the functions
obtained. We see from (2.6) that the amplitude cf the z~component of the velocity 1.1(Z:
attains its maximum veliue 1.~ at the centre of the cell V. *=1.({. The latter depends
strongly on L.k and wl. For small values cf the parameter o< s i.e. when the interference
pattern is the smoothest, when A\A=Inki» L. 1. (1 behaves like  ock2L® (L) (1,(0) = (13.2%/6!)J¢® and
like eock=41-1(xLi(V, ()= Jo~9 when a3 n. For fixed I and =i, this function of kX reaches its
maximum value 1,*(( = 818.16-4/ when L = n, which corresponds to the spatially periodic structure
with period egual to twice the thickness.

Fig.l (curve 1) shows this relationship normalized to unity at t.h_.e maximum. For fixed
k and =L the function 1.(n of L assumes its maximum value V.*(0)= 0.084.7a7® at il = 8.2. Fig.i
(curve 2) depicts this relationship.

The function 1,(2) is even about the middle of the layer 2= 0, and the function Vi (Z)
is odd. At a<«€a the profile of the function V,(Z) is independent of the parameters of
the medium, and of the spatial period of heat emission, and is represented by curve 1 of Fig.
2. wWhen a3, the amplitude of the z-component of the velocity V:(2) is almest cc?nstant
along the cell, and falls sharply to zerxo only towaxds the edges. Curve 2 of Fig.2 is con-
structed for a= 50.

The amplitude of the s-component of the velocity is —il.(Z). The factor i in (2.9
means that it differs in phase from the z-compenent of the velocity by =a2. Let us dencte
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by +2Z, the position of two maxima of the modulus of V,(2Z). Then at a<n we have Z,= 0.281.
Neither Z, nor the profile V,(2) (curve 3 in Fig.2) depend on the parameters of the problem.
The value of the maximum behaves like |V, (Z,)|=8.7-10"¢-Jaoo kL*(xL). In the other limiting case
a>n and the maximum point of the profile V. (Z) comes into contact with the layer boundaries
according to the law Z, =1/, — 2/a. The value of the maximum behaves as |V, (Z,)|= I/(2a%*) oo k~4L-! (xL).

The profile of the function —iV,(Z) for a¢= 50 is shown in Fig.2 (curve 4).
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The amplitude of the temperature perturbation ©(Z) is an even function of Z and does
not depend, in the approximation used here, on whether the liquid moves or not. When aes<€n,
it is parabola with a maximum at Z=0 equal to © (0) =~ nl//(8agp,L?) oc L (xL), with the profile
independent of the parameters of the system. We note that when a<£n, the temperature
perturbation does not depend on the period of the interference intensity pattern. When ¢S .
we have 6 (0) = nJ/(agpol®?) oc k2L~ (xL) and the function 6 (Z) is almost constant along Z and falls
sharply to zero only towards the boundaries.

These results show that already at very moderate values of the power density of the
interfering light waves (of the order of 100 w/cm® when the thickness is Loo0.icm and xL = 0.5)
very strong forced convection takes place. The amplitude of these convective motions (v, o 0,04
cm/sec) is clearly sufficient togive the system a required structure of initial perturbations.
We should stress that it is very easy, using the light field, to generate initial perturbations
of widely differing structure, i.e. in the form of uniform rollers, rollers with dislocations
/5/, annular rollers, cells with square or hexagonal packing, perfect or containing various
dislocations. A smooth change of the periods of the forced convection patterns is also
possible. All this show that laser beams are very suitable for use in the study of convection.

The authcrs became interested in the problems discussed here in connection with an
analogous problem of convection in an anisotropic liquid (in a nematic liquid crystal /4/).

Irn the case of an anisotropic liquid an explicit analytic solution of the convection preklem
could not be obtained under these conditions. The results obtained above represent one of
many examples of an analytic sclution of the convection problem in a layer, in which the real
boundary conditions are taken intc account.

The authers thank V.A. Gorodtsev, V.M. Entov, A.V. Sukhcv ané Yu.S. Chilingaryan for
useful discussions.
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