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A problemofregular, natural convection in a horizontal layer of liquid in 
a gravitational field, with volume heat sources distributed in the plane 
of the layer in a spatially periodic manner, is considered. It is shown 
that the response of the system is greatest , other conditions being equal, 
when the period of the source is approximately equal to twice the thickness 
of the layer. 

The literature offers a large number of analytically solved problems 
on natural convection when there is a temperature gradient /l-3/ created 
when heat is applied to the layer boundaries. At present, the absorption 
of energy from a coherent light wave generated by a laser makes it possible 
toproducevolume heat emission with practically any spatial distribution 
required, and to alter this distribution at will without any difficulties. 

1. Linearized convection equations with volume heat sources. Let us consider 
a horizontal layer of liquid -Ll2<a<Ll2 of thickness L, in the gravity field g= --ge,,g>O. 
We shall assume that two, plane coherecl ,t light waves impinge on the layer, and their inter- 
ference leads to a spatially periodic intensity distribution IE(r,y)l* and, with weak absorp- 
tion of light, to volume-distributed heat sources of the form 

Q(I, I! =g lE(r, yij’= $$ [iE,I*+IE*!?y (I.$, 
EIE~enp(rklx+ ik,g)T E&exp (--;x-~k~g)j 

Here k = (k,.k,l is the wave vector of the inhomogeneous part of the heat emission, lkl= 
2n /sin aI - sin a, 1 !i where CL,, ap are the anglesofincidence of the waves, i. is the wavelength 
of the light in air, x is the light absorption coefficient (v.LQil, E is speed of light in 
vacua, and n is the refractive index of the liquid. 

Let the temperature T,be maintained at the rigid boundaries I= fLi2 of the layer, and 
the boundary condition of adhesion of the liquid v(z=&Ld)= 0 be given. We have accordingly 
the equilibrium state of the light field 

v,, = 0. T, = const, p0 = const. p. = p (2 = 0) - peg: 

where v is the velocity, p is the density and p is the pressure. When the layer is iluminated, 
the system becomes perturbed and the steady state equations fcr the variations e=7 - T,. 6p = 
--apoe, tip = p - p. have,intheBoiissinesqapprcximaticr,, the form /l, 21 

7% = --q/E (.?. y: !?. xcn - q = fh&cp% (1.2) 

t-jT?\ - grad AF - p,,pa@e, = 0 !1.3. 

dir V = 0 :1.4, 
Here c,is the heat capacity, x is the thermal diffusivity, n is viscosity and 3 is the 

volume expansion coefficient of the liquid. 
Applying as usual the operators e, rtl and ezrotrot tc Eq.!1.3) and usino (:.4:, we obtain 

T‘?E = 0, i =_ p. rot \‘ 

r*!.:T~$g)=-o. .4_.y 

(1.5, 

,l.iil 

From the boundary conditions it foilows that ot,ar= dv,!oy = bl.y!Q = bl, "'tit = 0 when ; = -L 2. 
This, together with (1.4), implies that 8~:'8:= 0, E(r)= 0 when Z= cL.2, The svstem of equations 
11.11, (1.2) ) 
quantities 

11.4)-(1.6) and the boundary conditions shown are used to dete&ne the perturbed 
6(r) and t'[r~. 

2. Natural convection. From (1.5! and the boundary conditions for E it follows that 
:(I)= 0 at all points Of the liquid, i.e. there are no "screw" motions. We shall seek t-he 
sclution of the system of equations (1.2), (1.4:, (1.6) and E(r)=0 in the form 

e@)=* 1Slia+IE21" 2 [(J+z,] +e(z)PSp(;k~z+iliyY)+ c.c. Q.1) 

"x, *, : @) = I;, Y, t (~1 =P (Q -L $y) i c. c. 
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Then we obtain the following system of equations for e(z) and I',(Z): 

The spatially homogeneous part of the heat emission leads, neglecting convection, to the 
parabolic temperature distribution described by formula (2.1). The temperature gradient for 
this distribution is greatest near the boundary, where IaT//bxf= p(~E~[*+fE~/*)/z. Introducing 
now the Rayleigh number with help of the above value of the temperature gradient 

we can formulate the criterion of applicability of the above arguments. The linearization of 
the initialsystemleadingtotheBoussinesqapproximationis valid for R<&W. As we know 
(e.g. /4/), the value R= R+= 18,6&l@ determines the threshold of stability in the case when 
the upper and lower boundary of the layer are at the same temperature and the unstable 
stratification depends only on internal, evolution of heat. Therefore the influence of the 
homogeneous heat emission on the natural convection discussed here is vanishingly small, 
provided that the Rayleigh number satisfies, with a margin, the condition given above for the 
Boussinesq approximation to be applicable. 

From (2.2) we obtain the following equation and boundary conditions for the z-component 
of the velocity: 

i 
d2 

.?&-02)s I.% =--la? ii',i: 

1 
z==7, l’~&+&+~24 (2.5: 

As we see, Eq.(2.4) and boundary conditions (2.5) are invariant under the transformation 
z---z. therefore its solution must be an even function of Z. Therefore the general solution 
of (2.4) has the form 

l‘,(Zi = la-4 - (r, - +?I ch (02) f c,Z sh (oZ) (2.81 

The boundary conditions at Z=', and Z= -I'* are identical, yielding three conditicns 
(2.5) for determining three constants TI. c:. r3. and we obtain 

Using the S&YE notaticn we obtain frcz (l.3), the first equation of 12.2: and %(I.= (1. 

e:.,= ..-&_ [Iti-: - &c, ct, lOZ,J & (?.hl 

a.. G'l'_ 12) 
1' , .,(Z>= ,*.v. 

a-) dZ (2.9; 

Rotating the coordinate axes in the z.:, plane we can obtain (tl.= (1. and this wiil be 
assumed to hold below. Let us consider some special features of the behaviour of the functions 
obtained. We see from (2.6) *that the amplitude cf the z-component of the velocity I, (21 

attains Its maximr;m value 1..- at the centre of the cell 1-1+~ l.;(Ci,. The latter depends 
strongly on L.k and XL. Fo; small values cf the parameter 0<<3. i.e. wher. the interference 

pattern is the smoothest, wher, .\ =_?I k > L. 1; (0) behaves like wkzL” (XL) (I’, (0) = (13.P 6!) Ia: and 
like o;k-c~-l (~L.(l'~(ft) z 10-4) when a > 3 For fixed L and XL. this function of k reaches its 
maximum value 1~:'10~ z 8.l9.10-~1 when I;f z n, which corresponds to the spatially periodic structure 
with period eq-al to twice the thickness. 

fig.1 (curve 1) shows this relationship normalized to unity at the maximum. For fixed 

k and XL the function 1': (Oi of L assumes its maximum, value I',+ (0) z O.O&.~CZ-~ at kL z 8.2. F1g.i 

(curve 2) depicts this relationship. 
The function V2(2~ is even about the middle of the layer z= 0, and the function I‘, (Z1 

is odd. At 44~1 the profile of the function l',(Z) is independent of the parameters of 

the medium, and of the spatial period of heat emission, and is repxesented by curve 1 of Fig. 

2. When a@~, the amplitude of the z-component of the velocity I',(Z) is almcst constant 

along the cell, and falls Sharply to zero only towards the edges. Curve 2 of Fig.2 is con- 

structed for a= 50. 
The amplitude of the z-component of the velocity is --iI‘,( The factor 1 in (2.9) 

means that it differs in phase from the z-component of the velocity by n'? Let us dencte 
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by +Z, the position of two maxima of the modulus of V,(Z). Then at 04 n we have Z+= 0.281. 

Neither Z, nor the profile K,(Z) (curve 3 in Fig.2) depend on the parameters of the problem. 
The value of the maximum behaves like 1 Vx(Z+)~x 8.7.1O-'.Ioo3 kL4 (XL). In the other limiting case 

osn and the maximum point of the profile I', (Z) comes into contact with the layer boundaries 
according to the law Z,, -I/, - 2/a. The value of the maximum behaves as 1 T; (Z,) 1 = l/(We*) cv k-‘L-l (XL). 
The profile of the function -ii‘,(Z) for o= 50 is shown in Fig.2 (curve 4). 

Fig.1 Fig.2 

The amplitude of the temperature perturbation 8(Z) is an even function of Z and does 
not depend, in the approximation used here, on whether the liquid moves or not. When o<n, 
it is parabola with a maximum at Z= (1 equal to 8 (0) '5 nl/(8agp,l*) CI; L (XL,), with the profile 
independent of the parameters of the system. We note that when oen, the temperature 
perturbation does not depend on the period of the interference intensity pattern. When a>~. 
we have t?(O)= ql/(agpoL*02)wk-~L-1 (XL) and the function 8 (Zi is almost constant along Z and falls 
sharply to zero only towards the boundaries. 

These results show that already at very moderate values of the power density of the 
interfering light waves (of the order of 100 w/cm2 when the thickness is Lo30.1 cm and XL = O.jj, 
very strong forced convection takes place. The amplitude of these convective motions (1.:h;@,u4 
cm/set) is clearlysufficienttogivethe system a required structure of initial perturbations. 
We shoilld stress that it is very easy, using the light fieid, to generate initial perturbations 
of widely differing structure, i.e. in the form of uniform rollers, rollers with dislocations 
/5/, annular rollers, cells with square or hexagonal packing, perfect or containing various 
dislocations. A smooth change of the periods of the forced convection patterns is also 
possible. All this show that laser beams are very suitable for use in the study of convection. 

The authors became interested in the problems discussed here in connection with an 
analogous problem of convection in an anisotropic liquid (in a nematic liquid crystal /4/). 
In the Case Gf an anisotropic liquid an explicit analytic solution of the convection problem 
could not be obtained under these conditions. The results obtained above represent one of 
many examples of an analytic scl;ltiGn of the convection problem in a layer, in which the real 
boundary conditions are taken intc account. 

The authcrs thank V.A. GGrGdtSC:-, V.M. Entov, A.V. Stihcv and Yu.S. Chilingaryar, for 
usef.ul discussions. 
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